Flow rate-modulated dissolution of fibrin with clot-embedded and circulating proteases.
نویسندگان
چکیده
The efficiency of plasmin, miniplasmin, and neutrophil leukocyte elastase in fibrin digestion is well characterized in static systems. Since in vivo the components of the fibrinolytic system are permanently exposed to flow, we have developed two in vitro models and studied the effect of shear forces on fibrin dissolution with these proteases. Cylindrical nonocclusive fibrin clots are perfused at various flow rates through their preformed axial channel, and dissolution of fibrin is followed by measuring the absorbance of degradation products released into the circulating fluid phase. In one experimental setting, fibrin surface is degraded with enzymes applied in the recirculating fluid phase; in another setting, clots containing gel-embedded proteases are perfused with enzyme-free buffer. As shear rate at fibrin surface is changed from 25 to 500 s(-1), the rate of product release by recirculated enzymes increases 2.8-, 2.9-, and 4-fold for plasmin, miniplasmin, and porcine pancreatic elastase, respectively. Buffer-perfused fibrin containing gel-embedded plasmin or miniplasmin is disintegrated by shear forces at a relatively early stage of dissolution, and this disassembly is related to the formation of fragment Y (150 kDa) and fragment D (100 kDa) fibrin degradation products. Fibrin clots degraded by incorporated polymorphonuclear leukocyte elastase, which yields different degradation products, do not disassemble abruptly, even at the highest shear rate (500 s(-1)). Our results suggest that fibrin surface degradation is accelerated with increasing shear rate and that plasmin or miniplasmin embedded in the clot promotes the release of particular clot remnants into the circulating phase, whereas polymorphonuclear leukocyte elastase does not.
منابع مشابه
Antiadhesive effect of fibrinogen: a safeguard for thrombus stability.
The recruitment of phagocytic leukocytes to sites of vessel wall injury plays an important role in thrombus dissolution by proteases elaborated on their adhesion. However, leukocyte adhesion to the fibrin clot can be detrimental at the early stages of wound healing when hemostatic plug integrity is critical for preventing blood loss. Adhesion of circulating leukocytes to the insoluble fibrin(og...
متن کاملA mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow.
Our aim was to study the effect of an axially directed blood plasma flow on the dissolution rate of cylindrical non-occlusive blood clots in an in vitro flow system and to derive a mathematical model for the process. The model was based on the hypothesis that clot dissolution dynamics is proportional not only to the biochemical proteolysis of fibrin but also to the power of the flowing blood pl...
متن کاملMathematical modeling of blood clot fragmentation during flow-mediated thrombolysis.
A microscale mathematical model of blood clot dissolution based on coarse-grained molecular dynamics is presented. In the model, a blood clot is assumed to be an assembly of blood cells interconnected with elastic fibrin bonds, which are cleaved either biochemically (bond degradation) or mechanically (bond overstretching) during flow-mediated thrombolysis. The effect of a thrombolytic agent on ...
متن کاملKOLEV et al MYOSIN: A NON-COVALENT STABILIZER OF FIBRIN Scientific section designation: HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Myosin: a non-covalent stabilizer of fibrin in the process of clot dissolution
Myosin modulates the fibrinolytic process as a cofactor of the tissueplasminogen activator and as a substrate of plasmin. We report now that myosin is present in arterial thrombi and it forms reversible non-covalent complexes with fibrinogen and fibrin with equilibrium dissociation constants in the micromolar range (1.70 and 0.94 μM, respectively). Competition studies using a peptide inhibitor ...
متن کاملMyosin: a noncovalent stabilizer of fibrin in the process of clot dissolution.
Myosin modulates the fibrinolytic process as a cofactor of the tissue plasminogen activator and as a substrate of plasmin. We report now that myosin is present in arterial thrombi and it forms reversible noncovalent complexes with fibrinogen and fibrin with equilibrium dissociation constants in the micromolar range (1.70 and 0.94 microM, respectively). Competition studies using a peptide inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 82 10 شماره
صفحات -
تاریخ انتشار 1998